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Abstract

Traditionally, modeling investment and dispatch problems in electricity economics has been limited by
computation power. Due to this limitation, simplifications are applied. One common practice, for
example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The
increase of intermittent electricity from renewable energy sources (RESE) changes the validity of this
assumption. RESE already cover a certain amount of the total demand. This leaves an increasingly
volatile residual demand to be matched by the conventional power market.

This paper quantifies differences in investment decisions by applying three different time-resolution
residual load patterns in an investment and dispatch power system model. The model optimizes
investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288
and 16 time dices per year. The market under consideration is the four zone ERCOT market in Texas.

The results show that investment decisions significantly differ across the three scenarios. In
particular, investments into base-load technologies are substantially reduced in the high resolution
scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution.
Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy
differences.
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1 Introduction and Motivation

Adding a high share of variable wind power to anstixg power system changes the optimal
operation of the remaining power plants and theesitso the investment calculus for new generation
capacity. With low, near-zero variable costs, wpmver plants are usually the first generating units
that are dispatched in the power system. It isefioee common to subtract wind generation from total
demand to form the time-varying residual demand tha remaining generation units must be
dispatched to meet. Because of these dynamicsggdilel power prices tend to be lower in hours with
high wind power generation because the lower residemand can be met by cheaper marginal units
(Sensful’ et al.,, 2008; Munksgaard and Morthors820rraber and Kemfert, 2010 ; Green and
Vasilakos, 2010). The altered dispatch patternsvemalesale power prices, however, also impact the
investment calculus of new power plants as demaes ror existing units retire, and those new

investment impacts further influence dispatch arncing results (e.g. Dena, 2005).

Deriving an economic value of wind power to a pogystem based solely on the static perspective of
a dispatch model or empirical data is therefore sudticient. The dynamic adaptation processes in
which new power plant investment decisions are edswsidered is critical in accurately simulating th
impact of wind on the power system. A valid wayatcurately capture the value of wind power is
therefore to compare a power system without windggoand consequently without the adaptation
effects due to wind power with a system that adeptee wind power penetration through appropriate

investment decisions.

Despite the interrelationship between short-terrspalich results and longer-term investment
decisions, modeling the combined impact of botreaff has proven challenging. Two general
research streams exist in the literature: the fists high-temporal resolution dispatch models to
capture the short-term price effects due to théaldity of wind power, whereas the second uses
capacity-expansion investment models to illustréte longer-term adaptation processes of the
remaining power system. To try to capture longemtewvestment effects, dispatch models sometimes
use power plant portfolios that are generated faonmvestment model (see e.g. Green and Vasilakos,

2010), but in other cases impacts on investmernisidas are ignored (e.g. Sensful? et al., 2008).



Some studies have sought to explicitly combineatidpand investment optimization decisions into a
single modeling framework in order to more-accuyatapture the benefits and impacts of wind
power on the power system (Neuhoff et al., 2008;ENR2008; Dena, 2005). Due to the high
computational demands of accurately modeling thebioed dispatch and investment optimization
problem, however, a reduction in model complexityisually required. One typical way to do this is
to reduce the temporal resolution of the modelmagnework; for example, rather than dispatching the
system on an hourly basis over entire years, idssetecting a smaller number of broader time slices

to evaluate.

Reducing temporal resolution in this manner mawgeropriate in systems without high penetrations
of variable generation because, for example, evargkday evening within a season may have a
relatively typical demand pattern that does notiaevinordinately from one day to the next. Adding
significant quantities of variable generation, heare can change the residual load substantiallgtron
hourly basis. In order to capture these effectheeia model with a higher temporal resolution is
required or the addition of correction factors nieeyneeded to try to approximate the correct result.
To date, however, little research has been puldlisimethe impact of model-based temporal resolution

on modeling results in instances with high levédla/imd penetration.

To explore the impact of temporal resolution orpdish and capacity expansion results, a model that
can account for both hourly dispatch and long-teapacity expansion has been constructed. In this
article, the results of the model under three diifié time resolutions are computed. The high-

resolution case has 8760 h per year, allowing torly dispatch decisions to be considered when
determining optimal capacity expansion and othsults. The medium-resolution case evaluates 288
h during the year, reflecting typical days by se@ass has been used in dena (2005). The low
resolution case has just 16 broad time sltoafjch follows the approach used by NREL's ReEDS

model as used to evaluate a high penetration wiaedasio for the U.S. (NREL, 2008), but without the

! The 288 h resolution case assumes typical patfernsorkdays, Saturdays and Sundays within eaahase
and therefore averages e.g. the third Wednesdaynpeth each season to create a “typical” workddne T6
time slice approach averages similar load situatfmer season in a broader approach, e.g. all h@ht within
one season.



correction terms utilized by ReEDSIn all instances, the model results presented hewsely

simulate the power system in Texas, home to tlgesiwind power market in the United States.

The aim of this article is to broadly evaluate itiduence of model-based temporal resolution on the
impacts of high penetrations of wind energy ongbwer system, and not to specifically evaluate any
individual pre-existing models. By learning moreoabhow temporal resolution impacts results, it is

hoped that models might be improved, either bydasing temporal resolution or — where modeling
complexity does not allow increased resolution —aldging correction factors to try to approximate

the true impacts of wind energy on power systembetier understanding of the impacts of wind on
the power market might also assist climate modetetake these factors into account when evaluating
alternative approaches to reducing global carbomssams using models that, because of their
geographic and sectoral scope, are unable apphythige resolutions (e.g. IPCC, 2007). Even where
model changes are not possible, the results thiatwfanay at least provide an indication of how

“inaccurate” low-temporal-resolution models miglat im simulating the impacts of high penetrations

of wind energy.

In order to capture the temporal resolution effetis specific scenarios (with the three temporal
resolution cases of 8760 h, 288 h, and 16 time)hce presented in the pages that follow. The firs
scenario contains no additional wind power deplaytradter 2008, and the model is run under all
three temporal resolutions. The second scenaric addubstantial quantity of additional wind
generation to demonstrate how that expanded peinetief wind energy impacts investment decisions
and dispatch results relative to the first scenaagain under all three temporal resolutions. By th
approach, first the temporal resolution effects lbaranalyzed and second, the particular wind energy

integration challenges can be analyzed under diffelemporal resolutions.

The remainder of this article is structured asofel. The second section describes the structuiteeof

model used in the present studyl ht High temporal resolutioklectricity-marketAnalysis-model”

2 ReEDS seeks to capture these effects by usingadiional “superpeak” time slice to account fo freak
reserve requirement and a “curtailment factor” twreraccurately estimate curtailment. The accuréddlyese
corrections is not addressed in the present study.



(THEA). The third section lists the key assumptiand summarizes important results from the model,
while also discussing the observed effects of tealp@solution on model results. Finally the fourth
section concludes with an overview on the factbed heed to be taken into account when high wind

penetration cases are modeled.

2 Methodology

THEA is a linear optimization dispatch and investineodel. The hourly dispatch is enabled by the
implementation of a decompaosition technique. Inwestt decisions are computed in 5-year steps until
2070. Because of the end-time issues of investmititsa long lifetime, results are only considered
until 2030.The capacity mix is determined by investment decisions, which themselves are impacted

by the dispatch part of the model, which provides information on efficient capacigaptations in
form of duals of the capacity restriction in arratéve algorithm that will be explained below. The
hourly dispatch considers fuel-type fleet investtaein order to keep the problem lingae., the
model considers all CCGTs within one vintage class as a single unit, and therefore does not evaluate
distinct individual plants). The age structure of the existing fleet is mirrored by vintage classes, which

take technology developments into account (e.g. efficiency). The coal fleet has six different vintage
classes, the CCGT fleet four, the OCGT fleet three and the nuclear fleet two. Existing hydro power
capacities are also included, but new investments are not possible due to the natural resource
restrictions. THEA optimizes the energy exchange between diftepeie zones, which are restricted
by exogenous net transfer capacity (NTC) parameiérs dynamic temporal approach of consecutive
hours considers start-up costs and part-load meffcies. In order to account for some electricity
market restrictions, positive and negative resemaeket requirements are implemented. Flexibility is
added to the power balance between demand andydaypph option to curtail wind power in case of

oversupply.

To allow efficient solutions to the dispatch anga&zity expansion problem in such a high temporal

resolution, an approach that was first presentedBbgder (1962), and is known as “Benders



Decomposition”, is implemented. Based on the dyadlieory, large mathematical problems can be
decomposed into smaller problems by fixing the darapng variable and optimizing it through an
iterative algorithm that converges when an optis@ltion is reached. Coéte and Laughton (1979)
presented an initial application of Benders decasitjom to power system optimization and proved its
advantages for a simple investment and operatioblgm in terms of memory requirements and
solution times. The approach has been further eghplor stochastic and integer programming
applications, while the challenge of utilizing thpproach for “real world” power systems has been
summarized by Wang et al. (1996): “Methods of Besdgecomposition are somewhat complicated,
and their application may be computationally impgalssfor large power systems”. Fortunately, the
latter concerns have subsequently been addressdtebyecent trend towards high-performance-
computing (HPC), thereby overcoming computatiorfallenges. To the knowledge of the authors,
THEA is the first application of Benders’ Decomgasi that utilizes a dynamic approach by
computing investment decisions in five-year stehar than as one single investment decision #or th
year under observation, while also making thosesdets on the basis of full dispatch years with a
maximum of 8760 hours each. In order to enablectimaputation of this complex problem, THEA
adds one additional tool from recent HPC develogmedispatch is calculated in a monthly
decomposed parallel mode. The advantage of thex lapproach is that while a global model utilizes
only one processor core, THEA uses all availables®f the modeling server. In other words,
depending on the amount of the available corekehtodeling server, up to 132 months of the eleven
considered investment years could be computed wimeously (for the purpose of the results

presented in the present paper 16 cores have e u



Fig. 1: THEA Model Structure
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Thebasic steps in the dispatch and capacity expampsariem solved by THEA arpresented in Fig.
1. First, the initial capacitgf the power systelis calculatedn the master problem (M, representing
a mix of existing incumbergeneratiorcapacity as well as amew installatios that are required to
fulfill the power system’s overalcapacity requirementsiny new installations required to me
overall capacity obligations under these initiahdibions are chosen based oleast cost algorithm,
but initially not considering the distch problem. Second, this initigenerationcapacity mix is
passed on to the dispatch part of TF, the subproblem (SPiHere THEA solves the linear dispai
problem considering both starp and part-load costs as well as reseweguirement. The total
dispatch costghat come from the Slas well as the capacity duals afen passed on to the
convergence check in the third step. Here, theritigo measures the cost difference betweer
lower bound (LB)and the upper bou (UB). The lower bound is the target function of the tee
problem whereashe upper bound derived from the dispatch cosf the SI and additional cost
factors from the MPSince the initiaMP has only information on investment c¢, and not on the

inefficiency of the dispatch proble that comes from fuel, start-up and pladéd costs as well ¢



reserve requirements, there is no possibility thatalgorithm can converge after only one dispatch
run. Since the algorithm does not converge in livel step, in the fourth step, the full MP receitles
dispatch costs as well as the capacity duals. dhmalted Benders’ cut then calculates the change in
the capacity mix that leads to a lower cost soluttm the basis of the capacity duals, which are
calculated in the SP and passed on to the MP.dryéteration, one additional Benders’ cut is added
to further constrain the solution space. This napacity mix is then again passed on to the SPrand t
algorithm continues. If the solution is within theedefined cost tolerance (in this article 0.001#,

algorithm converges with the optimal solution.

3 Inputs, Scenario Definitions and Results

Input Assumptions

As mentioned earlier, this article addresses twiterdint effects. First, the different investment

decisions for the three time resolution cases amyaed, and second, the impact of a high wind
penetration on optimal capacity expansion and titbpa compared to a case without additional wind
power growth. In all instances, the model resutesented here loosely simulate the power system in
Texas (ERCOT, in particular), home to the largastvpower market in the United States. Except for
the quantity of wind power deployed (which is inmiogenously, and varies based on the two

scenarios), all other inputs remain the same imtbéel results that follow.

Fuel prices and generation investment costs ardoas EIA (2010a), whereas g@¥ice assumptions
are based on Synapse (2008) (see Tab. 1 and TdaBeZause it impacts wholesale power prices and
wind energy curtailment decisions, an assumptionhe $-per-kWh level of policy support offered to
wind power plants is required. Based on the cupenduction tax credit (PTC) for wind energy in the
United States and on renewable energy certificatepestimated by EIA (2007) to be needed to meet
a possible future renewable portfolio standard (RR incremental wind support payment of

$30/MWh is assumed now and RPS certificate pri€egpao $18.2/MWh in future years.



Tab. 1: Assumed Variable Cost | nput Parameters

2008 2015 2020 2025 2030
Nuclear [$/mmBtu] 0.4 0.4 0.4 0.4 0.4
Coal [$/mmBtu] 2.2 2.1 2.1 2.1 2.1
Gas [$/mmBtu] 8.9 6.3 6.6 7.0 8.0
Oil [$/barrel] 99.6 94.5 108.3 115.1 123.5
CO2 [$/t CO2] 0.0 19.5 30.8 42.1 53.4
Wind support [$/MWh] 30.0 3.9 18.2 18.2 18.2

Source: EIA (2010a), EIA (2007), Synapse (2008).

Assumed investment costs for the five alternatiemegation unit types considered by THEA are
presented in Tab. (@ind is not included here, as wind power capacity is exogenously input into THEA
without consideration of its costs). The “superpeaker” unit type is intended to rdfgeneration units
that are only utilized in very few hours per ydarthe modeling presented here, this unit is assume
to have the attributes of an oil turbine, thougipiactice, the services provided by these plamidc

be met with load shedding, demand-response progrdmsel generating sets, gas combustion
turbines, or other options. Other generation oyticonsidered in THEA are nuclear, coal, combined-

cycle gas turbines (CCGT), and open-cycle gasnegh{OCGT).

Tab. 2: Assumed Power Plant I nvestment Costs

[$/kW]
Nuclear 3,820
Coal 2,223
CCGT 968
OCGT 648
Superpeaker 500

Source: EIA (2010a).

Fig. 1 shows the amount of incumbent generatioracigyp that is still available in 2030. With the

exception of wind and hydro, the generating cajecthat are required to meet the residual demand
are added endogenously. The underlying lifetimeiragsions for existing technologies are 50 years
for nuclear plants, 40 to 50 years for coal plaB@sto 40 years for CCGTs, 25 to 40 years for OCGTs

and 40 years for the “superpeakers”.



Fig. 2: Incumbent Generation Capacities
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Overall annual electricity demand is assumed toemge from 312 TWh in 2008 to 427 TWh in 2030,
which is derived from the estimated increase irkgdead provided in ERCOT (2010a). The overall

temporal load pattern is assumed to remain contemighout the modeling period (ERCOT, 2010b).

In the high-wind scenario, the wind share is assltoencrease from 4.8 % in 2008 to 25 % in 2030,
while in the reference scenario wind generatiokejst constant at 4.8%. Since much of the new wind
power deployment in the high-wind scenario is k&b occur in the western zone of the ERCOT
market, away from major load centers, additiorah$mission capacity would be needed to serve load.
Though THEA does not directly address transmisisues, it is assumed in the present analysis that
new transmission is built such that in 98% of tiingetall wind generation is able to serve load, @hil
during the remaining 2% curtailment is applied lblasa transmission limitations. This approach is
consistent with ERCOT 2006), and follows the re@asprnthat optimal (least-cost) transmission

expansion for wind will not necessarily seek tawd®leach and every unit of wind electricity todoa



The initial difference in temporal resolution cam dbserved ikig. 3, which shows the load duration
curves for the two wind penetration scenarios undiee different time slice approaches (the load
duration curve for the low-wind reference case higth-wind base case are equivalent, so the only
variation in the load durtation curves comes inrtteamporal resolution; the residential load dwati
curves of the low-wind and high-wind cases do djfendFig. 3 only presents the lattet)On first
sight, even the load duration curve under the lmmyresolution case with only 16 time slices matche
the 8760 h case surprisingly well. The differenbetveen the three temporal resolutions are most

obvious at both ends of the curves, but for loachtiion curves, are not substantial.

Fig. 3: Load and residual load duration curves for three temporal resolution cases
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Source: own calculation based on ERCOT (2010b).

Since the conventional power system does not haweeet the full load, but only the residual load,
Fig. 3 also highlights the three different residual Iahatation curves for the high wind scenario. As

shown, the deviations between the three temposaludon cases increase with higher wind power

% This should be understood as one possible waggment the time slices. This example changes if e.g
different days are selected as type-days. The aphes applied here follow dena (2005) for the tyae-
approach and NREL (2008) for the 16 time slice apph.



penetration. In addition to the stronger deviatjomisich are especially observable at both endeef t
curves, the slope of the duration curves diffep dts a higher degree compared to the overall load
duration curves. In sum, reducing temporal resotutioes not - visually — have a significant impact
on the load (or residual load) curve when variakied generation is low. At a 25% wind energy
penetration level, however, the residual load curades substantially among the three temporal

resolution cases presentedig. 3.

Model Results
Optimal capacity expansion

Model results for total generation capacity in 2089 unit type, under both scenarios and all three
temporal-resolution are presentedig 4. In the low wind scenario, the main differencegy@neration
capacity among the different temporal resolutiomimes from different assumed peak loads. This is a
direct result of the observed difference in théthefnd-side of the load duration curves shown mZi
where one can see substantial differences in pesdsldepending on the temporal resolution used.
The higher the temporal resolution, the more effecthe model is in capturing real peak load
requirements, leading to greater quantities of imgpkunit capacity (i.e., the capacity of
“superpeakers” and the OCGTs increase as tempesalution increases). When it comes to the
remaining capacities, however, there are only sldifierences among the three resolution cases in
terms of nuclear, coal, and CCGT capaéitEven the 16 time-slice low resolution case showse

or less the same capacity development as the kighlution case outside of the need for peaking
capacity to meet hourly peak loads. Adding a “speak” time slice, as applied in the ReEDS model,

is likely a sufficient solution to close this gamder the low wind scenario.

* Note that, for all calculated scenarios, no neal power plants are found to be built, given the, @fice
assumptions shown in Tab. 1.



Fig. 4: Capacity in 2030 for both scenarios and three temporal resolution cases
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Optimal capacity expansion is substantially différan the high-wind penetration scenario, and also
varies significantly depending on the temporal k&san. Under all three temporal resolutions, the
peak capacity need under the high-wind scenariguisstantially greater than under the low-
penetration scenario, a capacity need that is metubstantially greater quantities of super-peakers
and OCGTSs, but correspondingly lower amounts ofl@arcgeneration capacity. This shift towards
greater quantities of peaking generation and layuamntities of baseload generation is consistertt wit

other analyses of high-penetration wind energy a&ges (e.g. dena, 2005).

In comparison to the low-wind scenario, the remmajréapacity mix under the high-wind scenario also
varies substantially depending on the degree ofpteat resolution. In addition to the greater
investments in OCGTSs, the higher temporal-resalutases also result in greater investments in
combined cycle gas turbines (CCGTSs). When it cotodsase-load general investments, even though
the low resolution case has in absolute terms lopeak capacity requirements, the base-load
investments are found to be higher, even in absdéarns, than in the high resolution cases. Irceffe

as temporal resolution increases under a high-wektration scenario, the remaining conventional



generation mix tends to shift towards intermeditd peaking plants that can cost-effectively meet
the decreased capacity factor and flexiblity nesfda high-wind scenario, while shifting away from

conventional baseload units.

One additional outcome of this scenario comparisatme implicit capacity credit for the additional

wind capacity. In 2030, the wind capacity differerietween the low- and the high-wind scenarios is
32 GW. The difference in conventional capacity wthe scenarios in the low resolution case is 3
GW, in the medium resolution case 2 GW, and inhigh resolution case 1.4 GW, which equals a
capacity credit of 9.3 % in the low, 6.4 % in thedium and 4.3 % in the high resolution case. Using

lower temporal resolutions is therefore found terstate the capacity value of wind energy.

In sum, these results demonstrate that higher teahpesolution plays a significantly more important
role in high wind energy penetration scenarios timatraditional energy sector modeling. Scenarios
with relatively low amount of wind energy, on thther hand, may be modeled with lower temporal
resolutions without sacrificing the accuracy of thesults substantially, especially if peak load

requirements are accurately modeled.

Generation dispatch

Model results for generation utilization in 2030, bnit type, under both scenarios and all three
temporal-resolution cases are presented in Figh&é generation share in the low wind scenario
follows the observations above with respect to stivent decisions: relatively modest differences
among the temporal resolution cases. Some diffessnbowever, are observable. Specifically,
generation from nuclear plants is somewhat higheghé low resolution case, while generation from
CCGTs is higher in the high resolution case. Initimtd there is a small amount of generation from
OCGTs in the higher resolution cases and virtuatipe in the low resolution case. Even with low
levels of wind generation, it is clear that lowemporal resolution models are unable to fully ceptu

the need for peaking and intermediate generatidineipower sector.



Fig. 5: Generation shares in 2030 for both scenarios and three temporal resolution cases
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As with the optimal capacity mix, these differendecome much more striking under the high-
penetration wind energy scenario. Regardless otidggee of temporal resolution, high penetrations
of wind energy are found to increase the supplpesking and intermediate generation, and reduce
the need for baseload generation. Perhaps momtiamply from a modeling perspective, however, is
that temporal resolution has a dramatic impact aaeh results. In particular, the generation mix
becomes much more peak oriented in the high resolaases: there is more generation from OCGTSs,
CCGTs and even the “superpeaker” category has @t ggeneration hours, whereas baseload nuclear
generation decreases substantially. As with capagpansion, these results demonstrate that higher
temporal resolution plays a significantly more imtpat role in high wind energy penetration
scenarios than in traditional energy sector modeliitnese differences are, in part, simply an outcom
of the different investment patterns, but as casdsn in the cases of OCGTs, differences are also d

to dispatch decisions.



Wholesale power prices

Differences in capacity expansion and generation aneé also reflected in estimated annual average
wholesale power market prices, as showrFiga 6. The high wind scenarios tend to have lower
average wholesale prices than the low wind scesianbile higher temporal resolutions also tend to

result in lower overall average wholesale prices.

Fig. 6: Average wholesale prices in both scenarios and three temporal resolution cases in 2030
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During hours of high wind power generation, wholegaower prices are driven below the average
price level, resulting in an overall reduction iveeage wholesale power prices under the high-wind
penetration scenario, as shown Fig. 6. Nevertheless, a second trend operates in thesapp
direction: under the high-wind scenario, a great@ount of intermediate and peaking generation is
used, generation that requires higher wholesaleegrio support the variable costs of those units
relative to baseload plants. Since the averagegpsbown irfig. 6 present only the average effects,
thereby masking these influencéig, 7 depicts the wholesale price behavior in form aég@duration
curves, where both of the above-mentioned trenel®©bservable. For the purposef®. 7, only the

highest temporal-resolution (8760 h) cases are aoaap



Fig. 7: Price duration curves for both 8760 scenarios
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As shown, the price duration curve of the low wswtnario is most of the time above the one from
the high wind scenario, especially when pricesrafatively low. During very high-priced periods,
however, the opposite trend is observable. Bd#ctf are more-readily seenfig. 8, which focuses

on the particularly high- and low- priced portiafghe price duration curve.



Fig. 8: Zoom into the highest price (left) and lowest price (right) areas
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During the periods of high wholesale power pri¢hks, price duration curve of the high wind scenario
is above the one from the low wind scenario, cdestswith the higher generation share from peaking
and intermediate units in this scenario and thestowge of baseload units. Though these differemce i
the high-price periods are relatively modest, thigei@nce in the lowest price periods are more
apparent. In particular, the price duration cumethie high wind scenario drops to low and even
negative prices far more frequently than in the limd scenario. The low, but positive plateau
represents the hours in which nuclear generatipresents the marginal unit, whereas negative prices
are present because wind generators are assumecktee a $18.2/MWh support payment, so would
be willing to generate at wholesale prices at aval®$-18.2/MWh. As soon as the power price drops
below this $-18.2/MWh level, wind generation is rteiled - this negative price level is therefore
observable as soon as wind generation is curtalbdgh of course happens more often in the high

wind scenario.

Wholesale mar ket value of wind energy

One additional metric that shows the advantage igh hemporal resolution modeling and that
naturally follows the price discussion is the wisale market value of wind energy, relative to agera
annual wholesale prices (Fig 8). The general pattefer time shows that, after the transmission

restriction is assumed to be somewhat relaxed 200% onwards, the wholesale market value of wind



energy increases until higher wind penetrationlfeaee reached, at which point the market value of
wind drops for the reasons discussed earlier. paitern is observable in all cases, regardlesheof t
degree of temporal resolution, and can also be w&en comparing the low- and high-wind cases in
Fig 8. In addition, the higher the temporal retoly the lower the estimated wholesale value afdwi
energy since more extreme events, which are onbsgmt in the high resolution cases, have
particularly strong price effects. As a resulttlie low resolution case, the wholesale market vafue
wind is only slightly below the average wholesateg whereas the higher resolution cases show a

stronger deviation between the wholesale valueind\and average wholesale prices.

Fig. 9: Wind energy wholesale value for both scenarios and three temporal resolution cases, relative to average
wholesale prices
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Wind energy curtailment

Fig 9 presents model results for wind energy cimemt. Naturally, the higher wind penetration
scenario also shows higher relative curtailmenglvin addition, since the extreme events onlysho
up in the higher resolution cases, curtailmentoigsnfl to increase with temporal resolution. This
finding, along with the previous finding on the viemale market value of wind energy, underline the

conclusion that dispatch behavior is best matchiéuvigh temporal resolution.

Fig. 10: Relative Curtailment development in both scenarios and three temporal resolution cases
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4 Conclusion

The modeling results presented in this paper detraigesthe importance of temporal resolution in
evaluating high wind penetrations. The low windrsrios show relatively small capacity investment
deviations when moving from high to low temporaakition. The corresponding results for the high
wind scenarios, on the other hand, differ signifitbawith temporal resolution. More specifically,

under high wind scenarios, lower temporal resohgi@re found to result in far-higher levels of
baseload capacity (e.g. nuclear) than are foure toptimal with more accurate modeling. The higher
the temporal resolution, the lower is the base gshcity. Consequently, models with low temporal
resolution may substantially overstate the amoftifiageload generation that would be economically
optimal under a high-penetration wind energy saenavhile understating the need for peaking and

intermediate generation units.

When it comes to the dispatch part of the modelptaral resolution is also found to play an impartan
role, especially under high penetration wind enesggnarios. Again, the higher the temporal
resolution, the greater the reliance on peakingiatefmediate generation supply and the lower the
contribution of baseload generation. Moreover, loyweobability power system events are only
captured when temporal resolution is high, so retalfferences in the market value of wind and
wind energy curtailment are observed when tempesailution changes. The market value of wind as
well as the curtailment behavior is best capturgdhlyh temporal resolution: models with low
temporal resolution will tend to overstate the neankalue of wind, and understate the prevalence of

wind curtailment.

An important implication of these results is theethdo model high-wind scenarios with capacity
expansion and dispatch models with high temposdlttions. Where high temporal resolutions are
not possible due to computing constraints, comactactors might instead be applied. Based on the
results presented here, those corrections wouldllyjddave the effect of reducing baseload (and
increasing peaking and intermediate) capacity amegtion with the level of wind energy supply,
while also increasing the aggregate level of cotivaal capacity to meet peak system loads. In

addition, in the modeling presented in this papemd power development was established



exogenously, and the value of that wind generatias found to decrease with penetration. Though
the degree of that decrease in value will deperdrge measure on the composition and flexibility o

the conventional generation mix, and will be highlsstem specific, correction factors to account for
the decrease in market value of wind with penematire needed if low temporal resolution models

are used.

In conclusion, the additional requirements on tlemventional power market with high wind

penetration are also reflected in additional rezuents for power sector dispatch and capacity
expansion modeling. In general, the higher the vgedetration, the more important is the temporal
resolution in simultaneous dispatch and investnadgmision. Fortunately, progress in computational
power enables modelers to increase the degreecofamy in the models, and increase temporal
resolution. Although modeling at an hourly timepsie not possible for all applications, stepwise

progress seems appropriate, with correction faetpptied where necessary.
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